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Recursive Collocation for the Numerical Solution of Stiff 
Ordinary Differential Equations* 

By H. Brunner 

Abstract. The exact solution of a given stiff system of nonlinear (homogeneous) ordinary 
differential equations on a given interval I is approximated, on each subinterval ok cor- 
responding to a partition 7rN of I, by a linear combination Uk(x) of exponential functions. 
The function Uk(x) will involve only the "significant" eigenvalues (in a sense to be made 
precise) of the approximate Jacobiatn for ak. The unknown vectors in Uk(x) are computed 
recursively by requiring that Uk(x) satisfy the given system at certain suitable points in (ok 

(collocation), with the additional condition that the collection of these functions { Uk 
represent a continuous function on I satisfying the given initial conditions. 

1. Introduction. Consider a system of nonlinear ordinary differential equa- 
tions, 

(1.la) Y'(x) = F(x, Y(x)), x C I = [0, a] (Y E Rn, n > 1), 

with the prescribed initial condition 

(1.lb) Y(O) = YOu 

In this paper, we shall assume (without essential loss of generality, as will be seen 
in Section 2; compare also the remark II of Section 4) that the right-hand side in 
(l.la) be homogeneous in Y, i.e., 

(1.2) F(x,O) = 0 forallxE I 

(we note that this definition differs somewhat from the definition of homogeneity 
used by Hahn [3, p. 278]). 

Let G(x, Y) = aF/a YI.Y) denote the Jacobian of (I. la), with G(x, Y) real in 
T = {(x, Y): x EI I I YIi < o } . We assume that the elements {go} of G(x, Y) satisfy 
gi i C QT)9 i j = 1, ... , n. 

For simplicity in notation, we restrict our discussion to the case where the eigen- 
values I X,(x): v = 1,. - -, n} of G(x, Y(x)) (with Y(x) being the exact solution of 
the initial-value problem (1.1)) are simple for x C L Furthermore, we shall adopt 
the following notation: 

(a) the real eigenvalues will be ordered such that 

X(x) < X11,(x) < ... < X1(X) < 0, 

and 
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(b) the complex eigenvalues X,(x) = u,(x) + iv,(x), with v,(x) > 0, will be 
arranged such that 

Ur(X) < Ur-i(X) < ? < U1+1(X) < 0, 

where r = (n + 1)/2. 
Since G(x, Y(x)) is assumed to be real-valued for x E I, XM(x) will also be an 

eigenvalue of G(x, Y(x)). 
Although the present paper will emphasize the numerical solution of stiff systems 

(1. la), we note that the above assumption that Re( X(x)) < 0, x E I, v = 1, * - -, r, 
is not essential for the following discussion. In fact, many problems arising in 
chemistry, for example, yield X,(x) = 0, x E I, for at least one value of v. Compare 
also the numerical example presented in Section 3. 

We recall that the system (1.la) is called stiff in the interval I if the eigenvalues 
Xv(x): v = 1, * * ,n} satisfy, for all x E I, the two conditions 

(i) Re(X(x)) < 0, v = 1, --- n, 

and 

(ii) ~~~max[ Re(-X,(x))1 >> min [Re(-X,(x))1 
(v) (0) 

(see, for example, Lambert [4, p. 232]). 
It is the purpose of this paper to introduce an adaptive method for the numerical 

solution of a stiff system of the form (1.1) (subject to the assumptions stated above). 
This method is based on the following idea: The exact solution Y(x) of (1.1) shall 
be approximated on I by a continuous function U(x) E R' which is chosen such as 
to reflect the "structure" (i.e., the stiffness) of the given system. In other words, on 
a given subinterval ak of I (defined by a partition 7rN of I), U(x) shall have a repre- 
sentation Uk(x) which will be a linear combination of exponential terms involving 
only the "significant" eigenvalues (to be made precise in the following section) of 
the approximate Jacobian G(x, U(x)) for that interval. For a given partition VTN of 
I, the N representations { Uk(x) k = 0, 1, * * - , N - 1 } of U(x) will be generated 
recursively, via the requirements of continuity at the points of 7rN and of collocation 
at suitable points of a,, k = 0, 1, *, N - 1. We note that this method, of recursive 
collocation may be regarded as an implicit one-step method to generate approximate 
values to Y(x) at the points of the partition T7rN of L 

2. Computation of U(x). Let N > 1, and let 7rN denote a partition of I: 

iryv: 0 = to < t 1 < ... < tv = a. 

Set k = {X: k< X <x tk+ I, k = 0, 1, * * * , N - 1. We denote by U(x) an approxi- 
mate solution of (1.1), with U(x) = Uk(x), X C ok. Furthermore, let { Ik. : V = 1, * * 

n} be the eigenvalues of G((k, Uk(Qk)) and, as above, suppose that: 
(i) for k = 0, 1, *, N - 1, the eigenvalues I Xk.V} are simple; 
(ii) for a given k, the real eigenvalues are ordered such that Xk-l < Xk.z-1 < ... < 

Xk l < 0; and 
(iii) for a given k, the complex eigenvalues XkM, = uk. + iv,. , with Vk. ,> 0, 

satisfy 
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Uk.r _< Uk-r-1 - * < Uklc+1 < 0, 

where r = (n + 1)/2. 
For x C 0k, U(x) shall possess the representation 

X '(k) 7k 

(2.1) Uk(x) -E Ak .vEk .v(X) + E (Bk.MCk .M(X) + Ck .,Sk.j,(X))* k.k(x), 

with 

Ek.,(X) = exp[Re(Xk.) (X -W 

Ck .,(X) = COS[Vk .-,* (X - I 

Sk. (X) = sin[vk. * (x - I ] 

Here, w(k) and r(k) are such that only the "significant" eigenvalues { XW.v are taken 
into account: for a given Mk, 

Mk > min [Re(-Xk-.)] > 0, 
v =1l, * 

w(k) and r(k) are given by 

(2.2) R e(-Xk ) > Mk for fr(k) + 1, *I , 1; Xk.v real, 
7r(k) + 1, , r; Xk., complex. 

Clearly, max(w(k), r(k) - 1) > 1. (If the upper limit in one of the two sums in (2.1) 
is smaller than the lower one, then this sum is assigned the value zero.) 

We note here that, for large systems of ordinary differential equations, an alternate 
definition of the term "significant" eigenvalue may be more appropriate, especially 
if the eigenvalues occur in clusters. In order not to complicate the description of the 
method of recursive collocation, we refer to the remark I of Section 4. 

From (2.1), we obtain 
co Mk) 

(2.3) Uk(x) - E ik., * Ek.,(X) + Z (Ak.PCk.,(X) + Ck-pSk-,(X))* k .(X), 

where 

Ank. = Xk.,Ak, vp= 1, * * * 

Bk. = Uk.MBk.u + Vk.MCk.MA 

Ok *1A = -Vk .,hBk .. + Uk.MCk.kuI = 1 + 1 . * * * T(k). 

For a given value of k, the unknown vectors { Ak., {Bk , Ck., } (which are in R ) 
will be computed recursively by imposing the following conditions on the approxi- 
mate solution U(x): 

(A) if U(x) = (u "'(x), . , W)T, then 

(2.4) u(')(x) E C(I), j = 1, ..., n; 

(B) for given points {Xk.i} C OTk, 4 < Xk.1 < ... < Xkm-l <_ 4k+1, the repre- 
sentation Uk(x) of U(x) in Sk is to satisfy (1. la) at these points (collocation points), i.e., 



478 H. BRUNNER 

(2.5) Uk(xk i) = F(xk i, Uk(Xk .)), i = 1, * , m - 1. 

Here, m = m(k) = w(k) + 2(r(k) - 1) > 1. In the case m = 1, the collocation con- 
dition (2.5) is empty. 

Relation (2.5) constitutes a system of (m - 1)n nonlinear equations for the (mn) 
unknown components of {Ak. }, { Bk -, Ck,. }, while (2.4), which may be rewritten as 

co(k) 7 (k) 

Uk(Ak) = E Ak - + E Bk.M = Uk-(lk), (2.6) IA= ,=+ 

k = 0, 1, , N - 1; U_1(0) = Yo, 

yields m additional (linear) equations for these unknown components. If the given 
system (1. la) is stiff in I (i.e., its right-hand side possesses a large Lipschitz constant 
in I), direct functional iteration in (2.5) will not converge for widely spaced colloca- 
tion points. Hence, one is forced to apply Newton's method (or one of its various 
modifications; see also [5]) to the nonlinear system (2.5). This situation is similar 
to the one encountered when solving a stiff system (1.1) by an implicit Runge-Kutta 
or linear multistep method. 

So far, a practically useful error analysis (i.e., an error analysis for finite values 
of N, with the differences hk = (k+l - (k not tending to zero) is not yet available. 
However, the application of the method of recursive collocation to numerous stiff 
systems (the majority of which is taken from [1]) has furnished approximate values 
of uniformly good accuracy, both for small and large values of hk. In the following 
section, we present one of these examples to illustrate this point. 

3. Numerical Example. The following example of a very stiff system of non- 
linear (homogeneous) ordinary differential equations arose in a problem of chemistry 
(see Gear [2], Bjurel [1]): 

yl(x) = -0.013 y2(x) - 1000 yl(x)y2(x) - 2500 y1(x)y3(x), 

y2(x) = -0.013 y2(x) - 1000 yl(x)y2(x), 

y3(x) = -2500 y1(x)y3(x), 0 < x ? 50, 

with Yi(O) = ?, Y2(0) = 1,Y3(0) = 1I 

Its Jacobian (computed along the exact solution) possesses three distinct real 
eigenvalues. A selection of these eigenvalues are contained in Table I. 

The approximate solution U(x) (involving the approximate eigenvalues Xk-1l 

and I Xk.2} corresponding to XA(x) and X2(x)) was computed for different step sizes 
(i.e., spacings of the collocation points) in the interval [0, 1]; for x C (1, 50], the 
uniform step size h = 1.0 was chosen. The resulting systems of nonlinear equations 
(2.5) was solved by Newton's method; here it was usually sufficient to perform one 
iteration step (using the previous set of coefficients as initial values) to come within 
a tolerance of 10-10. 

In Table II, we list a sample of numerical results. Observe that, in column (a), 
the values given are those at the collocation points (i.e., the values generated as if 
the method of recursive collocation were used as a one-step method), whereas in 
columns (b) and (c), the collocation points for the interval [0, 1] are . = 0.5, 2 = 1.-0 

and t, = 1.0, respectively. 
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TABLE I 

x X1(x) X2(x) X3(X) 

0.0 0. -0.0093 -3500.0 

0.1 0. -0.0040 -3501.4 

0.2 0. -0.0040 -3502.8 

1.0 0. -0.0041 -3513.9 

10.0 0. -0.0053 -3636.2 

50.0 0. -0.0088 -4103.5 

Approximate values of similarly good accuracy were obtained for rather large 
step sizes. As an example, we chose for the spacing of the collocation points over 
the entire interval [0, 50] the value h = 5.0. The corresponding values for U(x) at 
x = 50 are as follows: 

U(50) = (-1.893. 108, 0.5974750, 1.4025231)7, 

compared with the exact values 

Y(50) = (-1.893. 10, 0.5976547, 1.4023434)T. 

The error at x = 50 is 

E(50) = Y(50) - U(50) = (-0.00071. 1086, 0.0001797, -0.0001797)T. 

All the computations were performed on the CDC 6400 (single precision) at Dalhousie 
University Computer Centre. 

4. Remarks. We conclude with some additional remarks regarding the 
practical implementation of the method of recursive collocation described in Section 2. 

I. If the given system (1.la) is large, one will, in general, in (2.1) not select the 
significant eigenvalues of G(ik, Uk(Jk)) by means of the criterion (2.2), as briefly 
mentioned in Section 2. If some (real or complex) eigenvalues occur in one or several 
clusters, one will choose an appropriate eigenvalue ("centre" of cluster) to be repre- 
sentative for the particular cluster under consideration. (This choice of a repre- 
sentative eigenvalue somewhat resembles the choice of the parameter values in the 
method of exponential fitting; see Liniger and Willoughby [5, p. 56].) Furthermore, 
the eigenvalues of the approximate Jacobian G(Qk, Uk(Jk)) need not be computed 
to a great accuracy and, in the case where all the eigenvalues are real, the power 
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TABLE II 

x Y(x) U(x) 15(x) u(x) 

(a) (b) (c) 

0.0 0. 0. 0. 0. 

1. 1. 1. 1. 

1. 1. 1. 1. 

0.1 -3.7091C-6 -3*69910-6 -7.38910 -3.679 710 

0.9990706 0.9990703 0.9990692 0.9990669 

1.0009257 1.0009260 1.0009301 1.0i'09327 

0.2 -3.704.10-6 -3.704,10- -1.477 10-6 -7.356-10-7 

0.9981425 0.9981423 0.9981393 0.9981346 

1.0018538 1.0018540 1.0018593 1.018646 

0.3 -3.700.10-6 -3.700.10-6 -2.215,10-6 -1.103 10-6 

C.9972149 0.9972147 0.9972102 0.9972033 

1.0027814 1.0027816 1.0027876 1.0027956 

1.0 -3.665.10-6 -3.665.10-6 -3.665.10-6 -3.664.10-6 

0.09907319 0.9907317 0.9907259 0.9907C78 

1.0092644 1.0092647 1.0092704 1.0092886 

2.0 -3.61710G6 -3.617-106 -3.617 106 -3.617.106 

0.9815030 0.9815032 0.9814974 0.9814794 

1.0184934 1.0184932 1.0184990 1.0185170 

-6 -6 -6- 
10.0 -3.250.10 -3.250-10- -3.250 10- -3.250.10- 

0.9091683 0.9091715 0.9091660 0.9091486 

: 1.0908284 1.0908252 1.0908308 1.0906481 

-6 -6 6 -6 
50.0 -1.893.10 -1.893.106 -1.893-10- -1.893-10- 

0.5976547 0.5976649 0.5976607 0.5976477 

1.4023434 1.4023332 1.4023374 1.4023504 

Column (a): 7rN tj = jh (h = 0.1), j = 0, 1, * *, 10; 
tj = (j- 9)h (h = 1.0), j = II, *-- -, 59. 

Column (b): 7rN: t = jh (h = 0.5), j = 0, 1, 2; 
j= (j- l)h (h = 1.0), j=3,'* ,51. 

Column (c): 7rN tj = jh (h = 1.0), j = 0, 1, ... , 50. 
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method (inverse iteration) may be used to obtain approximations to the significant 
eigenvalues I Xk., } (significant in the sense of criterion (2.2) or of the alternate criterion 
stated above). 

II. If the system (1.la) is not homogeneous, then the local behavior of the exact 
solution of (I.1) will not be described by the eigenvalues of the corresponding Jacobian. 
As an example, consider a nonlinear system with a forcing term f(x) (see Bjurel [1]): 

yl(x) = -(55 + Y3(X))Yl(X) + 65 Y2(X) + f(x), 

Y'(x) = 0.0785 (yl(x) -Y2(0, 

y(x) = 0.1 y1(x), 

with the initial conditions yj(0) = 1, Y2(0) = 1, yA(O) = 0. At x = 0, the eigenvalues 
of the exact Jacobian are given by 

X, = -55.091, X2,3 0.062 i 0.011 i. 

Here, for x E ao, the approximate solution U(x) will in general be chosen such as 
to include a (differentiable) function (p(x) reflecting the influence of the forcing 
function f(x), i.e., 

(4.1) Uo(x) = (Bo.jc0.j(x) + Co.js0.1(x)),Eo.1(x) + Do.1 lp(x), 

with 

c0.1(x) = cos(0.011 x), so.1(x) = sin(0.011 x), 

eo.&) = exp(0.062x). 

For the subsequent intervals { o-, *., 0N-1 }, the process is then continued in a 
similar manner. 

On the other hand, if the forcing function f(x) varies only slowly in I, it will be 
suggestive to reduce the number of unknowns in (4.1) by replacing this expression by 

Uo(x) = (B0.1co.j(x) + Co.1so.1(x)) e0.1(x), 

i.e., by following the approach described in Section 2. However, this obviously will 
yield reasonable results only if m = w(k) + 2 (r(k) - 1) > 2 in (2.5). 
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